Analysis and Construction of Multivariate Interpolating Refinable Function Vectors
نویسندگان
چکیده
In this paper, we shall introduce and study a family of multivariate interpolating refinable function vectors with some prescribed interpolation property. Such interpolating refinable function vectors are of interest in approximation theory, sampling theorems, and wavelet analysis. In this paper, we characterize a multivariate interpolating refinable function vector in terms of its mask and analyze the underlying sum rule structure of its generalized interpolatory matrix mask. We also discuss the symmetry property of multivariate interpolating refinable function vectors. Based on these results, we construct a family of univariate generalized interpolatory matrix masks with increasing orders of sum rules and with symmetry for interpolating refinable function vectors. Such a family includes several known important families of univariate refinable function vectors as special cases. Several examples of bivariate interpolating refinable function vectors with symmetry will also be presented.
منابع مشابه
Construction of Wavelets and Framelets by the Projection Method
The projection method is a useful tool for analyzing various properties of multivariate refinable function vectors and for obtaining low-dimensional refinable function vectors and wavelets from high-dimensional ones. In this paper, we shall further study the projection method and its applications to multivariate wavelet and framelet systems. Examples will be given to illustrate the projection m...
متن کاملGeneralized interpolating refinable function vectors
Interpolating scalar refinable functions with compact support are of interest in several applications such as sampling theory, signal processing, computer graphics, and numerical algorithms. In this paper, we shall generalize the notion of interpolating scalar refinable functions to compactly supported interpolating d-refinable function vectors with any multiplicity r and dilation factor d. Mor...
متن کاملAnalysis of Optimal Bivariate Symmetric Refinable Hermite Interpolants
Multivariate refinable Hermite interpolants with high smoothness and small support are of interest in CAGD and numerical algorithms. In this article, we are particularly interested in analyzing some univariate and bivariate symmetric refinable Hermite interpolants, which have some desirable properties such as short support, optimal smoothness and spline property. We shall study the projection m...
متن کاملA construction of interpolating wavelets on invariant sets
We introduce the concept of a refinable set relative to a family of contractive mappings on a metric space, and demonstrate how such sets are useful to recursively construct interpolants which have a multiscale structure. The notion of a refinable set parallels that of a refinable function, which is the basis of wavelet construction. The interpolation points we recursively generate from a refin...
متن کاملConstruction of Multivariate Tight Frames via Kronecker Products
Integer-translates of compactly supported univariate refinable functions φi , such as cardinal B-splines, have been used extensively in computational mathematics. Using certain appropriate direction vectors, the notion of (multivariate) box splines can be generalized to (non-tensor-product) compactly supported multivariate refinable functions from the φi ’s. The objective of this paper is to in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009